35

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra were obtained in the following manner. Two samples of the material obtained above were weighed out and dissolved in $\mathrm{d_6}\text{-DMSO-5.3}$ mg was used for the $^{1}\mathrm{H}$ spectra, and 20.8 mg was used for $^{13}\mathrm{C}$ spectra. All spectra were acquired at ambient temperature on a JEOL Eclipse $^{+}$ 400 spectrometer operating at 400 MHz for $^{1}\mathrm{H}$ and 100 MHz for $^{13}\mathrm{C}$.

Label	¹³ C shift (ppm)	¹ H shift (ppm)	Multiplicity, splitting(Hz)
2	150.5 or 150.3	_	
4	156.4	_	
4a	117.9	_	
6	140.0	8.41	S
7a	150.5 or 150.3	_	
1'	86.9	5.94	D, 6.2
2'	73.7	4.62	m
2'-OH	_	5.50	D, 6.2
3'	70.5	4.17	m
3'-OH	_	5.23	D, 4.7
4'	85.7	3.96	m
5'	61.5	3.67, 3.57	m
5'-OH	_	5.02	D, 5.7
A	140.9	8.07	D, 0.8
В	120.2	_	
C	129.6	8.95	D, 0.8
D	161.7	_	
E	25.6	2.76	D, 4.6
NH_2	_	7.77	br s
NH	_	8.35	Q, 4.6

An elemental analysis gave the following results: C, 43.96%; H, 4.94%; N, 27.94. Theoretical: C, 44.12%; H, 4.94%; N, 27.44%; O, 27.09. The analysis corresponds within experimental error limits to the monohydrate.

We claim:

- 1. A monohydrate of (1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-methylcarboxamide, which monohydrate is in a crystalline form.
- 2. The monohydrate of claim 1, wherein the crystalline form has a X-ray diffraction pattern as shown in FIG. 3.

3. The monohydrate of claim 1, wherein the crystalline form has a thermogravimetric analysis pattern and a differential scanning calorimetry pattern as shown in FIG. 2.

4. The monohydrate of claim **1**, wherein the crystalline form is obtainable by a method comprising crystallizing (1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl) oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-methyl-carboxamide in an aqueous protic solvent or an aqueous polar solvent.

5. The monohydrate of claim 1, wherein the crystalline form is obtainable by a method comprising crystallizing (1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl) oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-methyl-carboxamide in a solvent selected from a mixture of ethanol and water and a mixture of dimethylsulfoxide and water.

6. A method for preparing the monohydrate of claim **1**, comprising crystallizing (1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-methylcarboxamide in an aqueous protic solvent or an aqueous polar solvent.

7. The method of claim 6, wherein the aqueous protic solvent or the aqueous polar solvent is selected from a mixture of ethanol and water and a mixture of dimethylsulfoxide and water.

8. The monohydrate of claim 1, wherein the crystalline 25 form has a ^{1}H NMR spectrum as shown in FIG. 1.

9. The monohydrate of claim **1**, wherein the crystalline form is free of any impurity represented by the following structure:

* * * * *